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LASER ISOTOPE SEPARATION* 

Reed J. Jensen 
J. A 1  Su l l ivan  
Frank T. Finch 

Un ive r s i ty  of Ca l i fo rn ia  
Los Alamos S c i e n t i f i c  Laboratory 

Los Alamos, New Mexico 87545 

ABSTRACT 

A b r i e f  background on t h e  h i s t o r y  and mot iva t ion  of l a s e r  
i s o t o p e  sepa ra t ion  i s  presented .  
i so tope  sepa ra t ion  are reviewed, and the  Los Alamos process  f o r  
s e p a r a t i o n  of uranium i so topes  a s  w e l l  a s  t h e  gene ra l  problems 
wi th  t h i s  approach a r e  covered. A s h o r t  summary on c r i t i c a l  uv 
cross-section-enhancement r e s u l t s  i s  given and t h e  imp l i ca t ions  of 
i n f r a r e d  c ross -sec t ion  dependence on laser f luence  is  d iscussed .  
The l a s e r  requirements f o r  t h e  LASL process  and t h e  p ro jec t ed  
economics f o r  t h i s  process  a r e  presented. The f u t u r e  p rospec t s  
f o r  molecular laser i so tope  sepa ra t ion  as w e l l  as some specu la t ion  
on gene ra l  advances i n  photochemistry are presented .  

Methods of molecular l a s e r  

INTRODUCTION 

In 1971 t h e  Un ive r s i ty  of Ca l i fo rn ia  Los Alamos S c i e n t i f i c  

Laboratory (LASL) i n i t i a t e d  a comprehensive research  program aimed 

a t  demonstrating t h a t  l a s e r s  could be used t o  e f f i c i e n t l y  s e p a r a t e  

t h e  i so topes  of uranium. Very e a r l y  i n  t h i s  program t h e  dec i s ion  

w a s  made t o  concen t r a t e  on molecular spec ie s  and in p a r t i c u l a r  t o  

c e n t e r  t h e  process  around t h e  use  of UFti. This a l lows  t h e  

* 
Work performed under t h e  ausp ices  of t he  U.S. Department of Energy. 

509 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



510 JENSEN, SULLIVAN, AND FINCH 

u s e  of t h e  e x i s t i n g  UF6 c a p i t a l  p l a n t  and e x p l o i t s  t h e  p h y s i c a l ,  

chemical  and s p e c t r o s c o p i c  s i m p l i c i t y  of UF6 a s  compared t o  o t h e r  

compounds. S e v e r a l  e x c e l l e n t  t e c h n i c a l  rev iews  and d i s c u s s i o n s  

on laser i s o t o p e  s e p a r a t i o n  have appeared,  and it w i l l  be  d i f f i c u l t  

i n  t h i s  paper  t o  add s u b s t a n t i a l l y  t o  what h a s  a l r e a d y  been publ i shed .  

More g e n e r a l  rev iews  of t h e  s u b j e c t  of laser  i s o t o p e  enrichment  

and a p p l i e d  photochemistry are a l s o  a v a i l a b l e .  

(4-10) 

(11-13) 

To d a t e ,  t h e  u s e  of lasers has r e s u l t e d  i n  t h e  enrichment  of 

t h e  i s o t o p e s  of over  1 3  e lements  ranging  from hydrogen t o  uranium. 

A summary t a b l e  of t h e  i s o t o p e s  enr iched  a t  LASL i s  p r e s e n t e d  as 

Table  I. In two cases presented  i n  Table  I, a n  i r  laser w a s  used 

t o  g e n e r a t e  a p h y s i c a l  d i f f e r e n c e  between t h e  a b s o r b i n g  and nonab- 

s o r b i n g  i s o t o p i c  molecules .  Fol lowing t h e  s e l e c t i v e  laser s t e p  

t h e  molecules  are s u b j e c t e d  t o  a s u c c e s s i v e  s t e p ,  which r e s u l t s  i n  

t h e  c leavage  of a chemical  bond w i t h i n  t h e  molecule .  As can be 

seen  from t h e  t a b l e ,  a v a r i e t y  of techniques  can  b e  used t o  achieve  

chemical-bond r u p t u r e  ranging  from a second laser t o  t h e  u s e  of uv 

f l a s h  lamps. Techniques t h a t  u t i l i z e  s i n g l e  uv and s i n g l e  i r  

lasers have been demonstrated d u r i n g  t h e  course  of t h e  i n v e s t i g a -  

t i o n s  a t  Los Alamos. 

of a complex molecule  such  a s  SF6 could be achieved i n  a s e l e c t i v e  

f a s h i o n  by t h e  a b s o r p t i o n  of 35 photons of about  0.1-eV energy h a s  

s i n c e  l e d  t o  t h e  a p p l i c a t i o n  of t h i s  phenomena t o  t h e  s e p a r a t i o n  

of o t h e r  e lements .  

d i s s o c i a t i o n  is  s t i l l  under e x t e n s i v e  i n v e s t i g a t i o n  by t h e  sc ien-  

t i f  i c  community. 

The d i s c o v e r y  (14-”) t h a t  t h e  d i s s o c i a t i o n  

The mechanism of c o l l i s i o n l e s s  mult iple-photon 

(2  0-23) 

The d i s c o v e r y  of t h e  mul t iphoton  d i s s o c i a t i o n  p r o c e s s  w a s  

e s p e c i a l l y  h e l p f u l  i n  provid ing  a photochemical method f o r  d i s s o c i -  

a t i n g  SF because t h e  compound has  no a b s o r p t i o n  i n  t h e  a c c e s s i b l e  

r e g i o n s  of  t h e  v i s i b l e  o r  u l t r a v i o l e t  spectrum. The same i s  t r u e  

f o r  S iF  and t h e  f r e o n s  that have a l s o  been s e l e c t i v e l y  d i s s o c i a t e d  4 
by t h i s  process .  I n  t h e s e  cases i t  h a s  been found t h a t  secondary 

r e a c t i o n s  between daughter  molecules  and i n i t i a l  r e a c t a n t s  do n o t  

l e a d  t o  l o s s  of i n i t i a l  s e l e c t i v i t y .  However, it is  o f t e n  t h e  
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512 JENSEN, SULLIVAN, AND FINCH 

case  t h a t  p rocesses  based on a c i d s  do s u f f e r  i s o t o p i c  scrambling 

because of t he  l a b i l i t y  of ac id  protons.  

employed one- and two-frequency processes t o  d i s s o c i a t e  UF 

Tiee and Wit t ig(24)  have 

6'  
It i s  i n t e r e s t i n g  t o  observe t h a t ,  even wi th  the  l abora to ry  

successes  such as those  presented i n  Table I, the  most s i g n i f i c a n t  

e f f o r t s  f o r  commercialization of l a s e r  i so tope  sepa ra t ion  f o r  any 

element o the r  than uranium are e f f o r t s  on s u l f u r  and carbon being 

pursued i n  t h e  USSR. 

In t h i s  paper we cover only molecular laser i so tope  separa- 

t i o n  phenomena. Information on atomic laser i so tope  sepa ra t ion  

and on l a se r - a s s i s t ed  chemistry can be found i n  t h e  r e fe rences  

prev ious ly  c i t e d .  

DISCUSSION OF PROCESSES AND MECHANISMS 

Laser processing of molecules can be broadly grouped i n t o  the  

appl ica t ion-or ien ted  ca t egor i e s  shown i n  Fig.  1. The f i r s t  s t e p  

i n  laser i so tope  sepa ra t ion  is  s e l e c t i v e  e x c i t a t i o n  of one of t he  

i s o t o p i c  spec ie s ,  and i f  t h e  e x c i t i n g  photon energy is  s u f f i c i e n t ,  

1 I 
AND PURIFICATION 

0 SELECTIVE 
EXCITATION 

B DISSOCIATION 

B CHEMICAL 
ACTION 

-1 
CATALYST 
GENERATION 

ENHANCED 
REACTION 
RATES 

ISOMERIZATION 

0 ABSORPTION 

LASER-INDUCED 
FLUORESCENCE 

CARS 

0 RAMAN 
SCATTERING 

FIGURE 1 General c l a s s i f i c a t i o n  of laser a c t i o n  on molecules 
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LASER ISOTOPE SEPARATION 513 

t h i s  s t e p  can l ead  t o  d i s s o c i a t i o n  o r  i on iza t ion .  The s e l e c t i v e  

e x c i t a t i o n  i s  made poss ib l e  by the  d i f f e r e n c e  i n  v i b r a t i o n a l  and 

r o t a t i o n a l  s p e c t r a l  f e a t u r e s  of t h e  d i f f e r e n t  i s o t o p i c  molecules 

brought about by t h e  d i f f e r e n t  masses. 

have t h e  b e s t  understood v i b r a t i o n a l  s p e c t r a ,  and, gene ra l ly ,  t h e  

b e s t  understood k i n e t i c s .  V o l a t i l e  compounds of heavy elements 

are gene ra l ly  polyatomic and, t he re fo re ,  have low-lying v i b r a t i o n a l  

s t a t e s  t h a t  produce an anharmonicity i n  the  progress ion  of l e v e l s  

of a l l  o t h e r  v i b r a t i o n a l  modes. These l e v e l s  a l s o  are o f t e n  

h igh ly  degenera te  s o  t h a t  t h e i r  popula t ion  i s  l a r g e  and t h e  popula- 

t i o n  of t h e  ground state i s  much less than  ha l f  of t h e  t o t a l .  

T rans i t i ons  beginning on these  many low-lying l e v e l s  are 

c a l l e d  hot bands, and they account f o r  cons iderable  broadening of 

s p e c t r a l  f e a t u r e s .  These f e a t u r e s  become a wide v i r t u a l  continuum 

f o r  compounds such as UF6. 
dramat ic  s p e c t r a l  s i m p l i f i c a t i o n  is t o  mix t h e  m a t e r i a l  wi th  a 

h igh  gamma ( r a t i o  of s p e c i f i c  hea t s )  gas- l ike  helium and then t o  

expand t h e  mixture i n  a nozzle.  (25) 

r e c e n t l y  descr ibed  r e s u l t s  of such experiments f o r  UF6. 

Cold gaseous compounds 

An experimental  technique f o r  achiev ing  

D. N.  Trav is ,  e t  a l .  have 
( 2 6 )  

I n  t h e  a t tempt  t o  o b t a i n  more v o l a t i l e  gases  so  t h a t  they  may 

be  cooled a t  equi l ibr ium by s t a t i c  techniques,  many h ighly  complex 

compounds have been proposed. It should be noted t h a t  t h e s e  

compounds have even lower-lying states and more complex s p e c t r a  

than  t h e  fu l ly - f luo r ina t ed  compounds. This added complexity w i l l  

have t o  be  compensated by d rama t i ca l ly  h igher  vapor p re s su res  a t  a 

given temperature t o  provide  a compet i t ive  process.  

s e l e c t i v e  e x c i t a t i o n  s t e p  is  c a r r i e d  out  wi th  low-energy photons, 

then  a d d i t i o n a l  s t e p s  are necessary  t o  achieve  sepa ra t ion .  

a d d i t i o n a l  s t e p  t h a t  has  been success fu l  i s  molecular d i s s o c i a t i o n  

through t h e  a d d i t i o n  of a uv photon o r  through t h e  a d d i t i o n  of 

s u f f i c i e n t  i r  photons. A second a l t e r n a t i v e  f o r  a second s t e p  i n  

laser i so tope  sepa ra t ion  i s  t o  take  advantage of t h e  increased  

chemical a c t i v i t y  normally a s soc ia t ed  wi th  t h e  more exc i t ed  i so top-  

i c  molecule. To d a t e  t h e  most success fu l  methods have been t h e  

I f  t h e  i n i t i a l  

An 
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514 JENSEN, SULLIVAN, AND FINCH 

pho tod i s soc ia t ive  methods wi th  some va r i ance  i n  the  degree of 

i n i t i a l  e x c i t a t i o n  as shown i n  F igs .  2 and 3 .  

In  a d d i t i o n  t o  l a s e r  i n t e r a c t i o n  s e l e c t i v i t y ,  t h e r e  are many 

o the r  problems t h a t  must be faced i f  a p r a c t i c a l  l a s e r  s epa ra t ion  

scheme is t o  be developed t o  commercial s t a t u s .  A s e t  of c r i t e r i a  

f o r  a success fu l  s e p a r a t i o n  process  is presented  below. 

S e l e c t i v i t y :  The s p e c t r a l  d i f f e r e n c e  between t h e  i so top-  

i c  molecules must be s u f f i c i e n t  t o  permit a major e x c i t a t i o n  

of one i s o t o p i c  molecule over t h e  o the r s .  

Quantum Eff ic iency:  The absorbed l a s e r  energy must lead  

t o  t h e  des i r ed  r e a c t i o n  o r  d i s s o c i a t i o n  wi th  reasonable  

e f f i c i e n c y .  

Separa t ion :  Af te r  t h e  s e l e c t i v e  s t e p ,  s epa ra t ion  of t h e  

product must be accomplished wi th  h igh  e f f i c i e n c y  and wi th  a 

minimum of scrambling r eac t ions .  

Throughput: The key t o  i n d u s t r i a l i z a t i o n  of s e l e c t i v e  

laser-based sepa ra t ion  processes  i s  h igh  throughput. I n  t h e  

gas-phase photochemical processes ,  t h i s  means working a t  a s  

h igh  a f eeds tock  dens i ty  as poss ib l e .  

Overa l l  Process  Eff ic iency:  The n e t  energy expended i n  

sepa ra t ing  t h e  des i r ed  product molecule from t h e  mixture 

should be minimized. If we  cons ider  a pho tod i s soc ia t ive  

process ,  then  t h e  minimum energy requi red  t o  e f f e c t  a separa- 

1 

NOLECULAR COOROINATE 

( a )  MULTIPLE PHOTON 
D l S S D C l  ATION 

MOLECULAR COORDINATE 

( b )  UV DISSOCIATION 

FIGURE 2 S ing le  frequency processes  
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LASER ISOTOPE SEPARATION 515 

* 
W o= 
W z Y 

MOLECULAR COORDINATE 
( c )  TWO PHOTON DISSOCIATION 

MOLECULAR COORDINATE 
~ 

MOLECULAR COORDINATE 

( d )  MULTIPLE IR SINGLE [e)  TWO IR FREQUENCY 
UV DISSOCIATION DISSOCIATION 

FIGURE 3 Two f requency processes  

t i o n  f o r  UF 
o r  309 kJ/mole of 235UF sepa ra t ed .  For gaseous d i f f u s i o n  

t h e  energy consumption is about  3 x lo8 k.J/mole of 

s epa ra t ed ,  which i s  more than  six-orders-of-magnitude g r e a t e r  

t han  t h e  minimum energy. This  l eaves  a l a r g e  margin f o r  

improvement and is one of t h e  reasons  t h a t  p h o t o l y t i c  methods, 

which o f f e r  t h e  p o s s i b i l i t y  of g r e a t l y  reduced energy consump- 

t i o n ,  a r e  s o  a t t r a c t i v e .  

A measure of t h e  e f f e c t i v e n e s s  of an i s o t o p e  s e p a r a t i o n  

i s  t h e  d i s s o c i a t i o n  energy of 3.2 e V  pe r  molecule  

235 

6 
6 

UF6 

process  is  t h e  s e p a r a t i o n  f a c t o r  a which i s  def ined  by t h e  r e l a t i o n -  

s h i p  

(Na/lJb) Product  a =  
(Na/Nb) Waste 

where N s t a n d s  f o r  number d e n s i t y  and X s t ands  f o r  mole f r a c t i o n .  A 
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516 JENSEN, SULLIVAN, AND FINCH 

h igh  va lue  of a a s s u r e s  a minimum number of s t a g e s  f o r  a des i r ed  

enrichment l e v e l .  

The complexity and t h e  number of o the r  cons ide ra t ions  f o r  a 

l a s e r  i s o t o p e  sepa ra t ion  process  a r e  i l l u s t r a t e d  i n  Fig. 4 .  Not 

shown i n  Fig.  4 are t h e  cons ide ra t ions  of p l a n t  des ign  and o v e r a l l  

p rocess  economics f o r  a laser process .  It is  apparent  t h a t  t h e  

development of a laser-based i so tope  sepa ra t ion  process  i s  a 

cons iderable  undertaking r equ i r ing  ex tens ive  bas i c  r e sea rch ,  

l abo ra to ry  tests and engineer ing  des ign ,  and t e s t i n g .  

THE LASL PROCESS FOR URANIUM ENRICHMENT 

S c i e n t i s t s  a t  Los Alamos S c i e n t i f i c  Laboratory have been 
235u i n v e s t i g a t i n g  a laser-based process  f o r  t h e  sepa ra t ion  of 

from n a t u r a l  ma te r i a l .  The process  uses  n a t u r a l  UF6 as t h e  feed 

material, which i s  d i s s o c i a t e d  by us ing  one o r  more i r  photons 

coupled wi th  a uv photon. S p e c t r a l  s i m p l i f i c a t i o n  and h igh  se lec-  

t i v i t y  a r e  achieved by expanding t h e  UF and a c a r r i e r  gas  through 

a supersonic  nozz le  a s  i l l u s t r a t e d  schemat ica l ly  i n  F ig .  5 .  The 
6 

LASER 
DEVELOPMENT 
LINE WIDTH 
POWER 6 ENERGY 
FREQUENCY 

PHOTO-PROCESSES , REACTANT 
PREPARATION 

t 

POST- PHOTOLYSIS 

SCAVENGER BEHAVIOR 
EXCHANGE RATES 

PRODUCT 
COLLECTION 
MATERIAL HANDLING 
PHYSICAL PROPERTIES 
STRELM PURIFICATION 

SPECTROSCOPY 
ISOTOPE EFFECTS 
GROUND 6 EXCITED STATES 
PRESSURE BROADENING 

FIGURE 4 I l l u s t r a t i o n  of cons ide ra t ions  important t o  laser i so tope  
sepa ra t ion  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



LASER ISOTOPE SEPARATION 517 

UF6 EXPANDS THROUGH A NOZZLE 

TWO LASER BEAMS BREAK SELECTED MOLECULES 

1 COLLECTABLE POWDER IS FORMED 

PRECIPITATES AS A SOLID 

SUPERSONIC EXPANSION PREPARES 
UF, FOR SEPARATION 

2Jsu'6 WoLECULE ENERGY FROM UV LASER 
REMOVES FLUORINE ATOM 

FIGURE 5 Laser  i s o t o p e  s e p a r a t i o n  process  

UF formed i n  t h e  p rocess  agglomerates  i n t o  a f i n e  s o l i d  powder, 

which can b e  removed from t h e  stream by an  appropr i a t e  f i l t e r .  

In  t h e  summer of  1976 t h e  LASL process  was used t o  e n r i c h  

uranium. The feed  m a t e r i a l ,  a long  wi th  a c a r r i e r  gas ,  was expanded 

through a de lava l - type  nozz le  and then  opera ted  on wi th  a 16-1.1m i r  

laser and a uv laser. I n  t h e s e  experiments  mi l l ig ram q u a n t i t i e s  

of s l i g h t l y  enr iched  uranium were c o l l e c t e d .  

5 

The f e a t u r e s ,  which make t h e  LASL process  unique and commer- 

c i a l l y  a t t r a c t i v e  a re :  

1. 

2. 

3 .  

4 .  

5. 

6. 

U t i l i z a t i o n  of  a feed  s t o c k  wi th  a well-developed supply,  

d i s t r i b u t i o n ,  and handl ing  indus t ry .  

The enrichment phys ics  a r e  s t r a igh t fo rward .  

Economic s t u d i e s  p r e d i c t  a fac tor -of - three- to- f ive  

r educ t ion  i n  t h e  c o s t  of fue l -grade  uranium us ing  t h e  

laser process .  

P red ic t ed  energy consumption f o r  t h e  process  is  about  a 

factor-of-20 less than  t h a t  f o r  gaseous d i f f u s i o n .  

The p rocess  is  one wi th  a h igh  throughput  and low p l a n t  

i nven to ry  . 
The process  i s  r e a d i l y  s c a l a b l e  t o  l a r g e  [9  x l o 6  SWU 

( s e p a r a t i v e  work u n i t s ) / y r ]  p l a n t s  and is  p ro jec t ed  t o  

b e  c o s t  e f f e c t i v e  over  a wide range  of p l a n t  s i z e s .  
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518 JENSEN, SULLIVAN, AND FINCH 

The dec i s ion  t o  use UF6 f o r  t h e  feed  m a t e r i a l  has r e s u l t e d  i n  

a n  ex tens ive  r e sea rch  e f f o r t  d i r e c t e d  a t  ob ta in ing  i r  l a s e r s  

appropr i a t e  f o r  s e l e c t i v e  e x c i t a t i o n  of any of t h e  i r - a c t i v e  

v i b r a t i o n a l  modes of t h i s  molecule. Because of t h e  high absorp t ion  

c r o s s  s e c t i o n  f o r  t h e  v3 band of UF6, much of t h e  l a s e r  r e sea rch  

e f f o r t  has  concent ra ted  on 16-pm devices .  This  e f f o r t  has  been 

very  product ive  and has  r e s u l t e d  i n  tunable  as w e l l  a s  f ixed-  

frequency i r  l a s e r s  t h a t  have a p p l i c a t i o n  i n  bas i c  r e sea rch .  I n  

a d d i t i o n ,  t h e  advancement of rare-gas-halide lasers as t h e  second 

laser f o r  t h i s  process  has helped t o  f u r t h e r  t h i s  technology t o  

t h e  po in t  where 1- joule  devices  wi th  k i l o h e r t z  r e p e t i t i o n  r a t e s  

w i l l  soon be a v a i l a b l e .  Laser development and r e sea rch  cont inues  

t o  be a s i g n i f i c a n t  p a r t  of t h e  advanced i so tope  sepa ra t ion  program. 

PROCESS PHYSICS 

There are two c e n t r a l  phys ics  i s s u e s  i n  t h e  sepa ra t ion  of 

uranium i so topes  through s e l e c t i v e  d i s s o c i a t i o n  of UF6. 

i s s u e  is  whether h igh ly - se l ec t ive  v i b r a t i o n a l  e x c i t a t i o n  can be 

achieved through i r  i r r a d i a t i o n ,  and second is  whether a l a r g e  

i n c r e a s e  i n  uv-photolysis c r o s s  s e c t i o n  w i l l  r e s u l t  from t h e  

v i b r a t i o n a l  e x c i t a t i o n .  

The f i r s t  

That i s o t o p i c a l l y  s e l e c t i v e  v i b r a t i o n a l  e x c i t a t i o n  i s  a t t a i n -  

a b l e  is  ind ica t ed  by t h e  h igh- reso lu t ion  i r  spectroscopy of 

UF6. ( 8 y  26’ 27) These s p e c t r a  were obta ined  by us ing  h igh- reso lu t ion  

tunable  laser d iodes  along wi th  t h e  technique of gas-dynamic 

cool ing  t o  achieve  depopulation of exc i t ed  states, and consequently,  

s i m p l e r  spec t r a .  S e l e c t i v e  v i b r a t i o n a l  e x c i t a t i o n  t u r n s  ou t  t o  be 

much more complex than o r i g i n a l l y  conceived because of t h e  ex i s t ence  

of multiple-photon e x c i t a t i o n .  (19y28y 29y 30) 

of the  multiple-photon abso rp t ion  i s  t h e  f a c t  t h a t  t h e  i n f r a r e d  

abso rp t ion  per  molecule a t  t h e  resonant  frequency decreases  wi th  

inc reas ing  l a s e r  f luence  f o r  most t r a n s i t i o n s .  (31 -34)  

A f u r t h e r  complication 

The f luence 
dependence of t h e  i r  c r o s s  s e c t i o n  i s  shown i n  Fig.  6 f o r  SF6. ( 3 2 )  
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LASER ISOTOPE SEPARATTON 519 

6 FIGURE 6 Absorption of t h e  P(16) l i n e  of t h e  C02 laser by SF 

Also p l o t t e d  on t h i s  f i g u r e  i s  t h e  p red ic t ion  from a simple two- 

l e v e l  model of t h e  absorp t ion .  

mode laser, and t h e  unsmoothed da ta  i s  f o r  a l a s e r  t h a t  i s  mode- 

hopping. A s  i s  seen i n  Ref. 32 and o the r s ,  t h e  t r a n s i t i o n s  wi th  

t h e  l a r g e s t  absorp t ion  c r o s s  sec t ions  show t h e  l a r g e s t  decrease  i n  

c r o s s  s e c t i o n  f o r  a given inc rease  i n  f luence .  Consequently, weak 

t r a n s i t i o n s  i n  unwanted molecules t h a t  l i e  under o r  near s t rong  

t r a n s i t i o n s  of des i red  molecules, tend t o  become nea r ly  equal t o  

t h e  h igh  c ross -sec t ion  t r a n s i t i o n s  as the  l a s e r  f luence  i s  in- 

c reased .  

The smoothed da ta  i s  f o r  a s ing le -  

To maintain high s e l e c t i v i t y  i n  the  v i b r a t i o n a l  e x c i t a t i o n  

s t e p  i n  t h e  f a c e  of t h e  decreasing absorp t ion  c ros s  s e c t i o n ,  it i s  

expedient t o  use  a d d i t i o n a l  i n f r a r e d  f requencies .  

e x p l o i t s  t h e  f a c t  t h a t  t h e r e  i s  a dramatic enhancement of t he  i r  

c r o s s  s e c t i o n  over a broad frequency range once the  molecule has 

absorbed seve ra l  ir photons. 

This process  

( 2 4 )  

Knyazev e t  a l .  (35) have r e c e n t l y  explo i ted  t h i s  technique t o  

demonstrate i s o t o p i c  s e l e c t i v i t y  of over 60 f o r  s epa ra t ion  of 
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5 20 JENSEN, SULLIVAN, AND FINCH 

carbon i so topes  i n  CF I. Resu l t s  of t h e i r  work a r e  presented  as 

Fig.  7.  Thus the  i r  abso rp t ion  spectrum, even of l a r g e  polyatomic 

molecules, i s  a s e n s i t i v e ,  dynamic func t ion  of t h e  i r r a d i a t i o n  

f i e l d ,  bu t  s t i l l  a f f o r d s  t h e  means of h igh ly  s e l e c t i v e  v i b r a t i o n a l  

e x c i t a t i o n  by proper c o n t r o l  of temperature and c o l l i s i o n  frequency 

coupled wi th  proper sequencing of frequency- and i n t e n s i t y -  

con t ro l l ed  lasers. 

3 

The second c r u c i a l  i s s u e  i n  laser i so tope  sepa ra t ion  is  t h e  

dependence of uv-photolysis c r o s s  s e c t i o n  on v i b r a t i o n a l  exc i t a -  

t i o n .  The work of Knyazev demonstrates an inc rease  i n  uv- 

pho to lys i s  c r o s s  s e c t i o n  of CF I wi th  inc reas ing  v i b r a t i o n a l  

energy. A s i m i l a r l y  convincing example is t h e  observa t ion  of a 

twenty-fold inc rease  i n  uv abso rp t ion  c r o s s  s e c t i o n  of OsO as a 

r e s u l t  of s t rong  i r r a d i a t i o n  a t  10.6 urn. 

3 

4 
(36) 

More t o  t h e  po in t ,  i t  has  been shown(37) t h a t  t h e  uv absorp- 

t i o n  by UF6 i n  t h e  420 t o  550-nm range i s  increased  f i f t y - f o l d  

0 

N 
E 
0 
Y 

300 400 

UV WAVELENGTH (nm) 

FIGURE 7 U l t r a v i o l e t  abso rp t ion  c r o s s  s e c t i o n  f o r  CF I p re - i r r ad ia t ed  
i n  t h e  i n f r a r e d  3 
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LASER ISOTOPE SEPARATION 521 

upon high-power i r r a d i a t i o n  i n  the  V2 + V 

8 . 6  pm. These r e s u l t s  are e luc ida ted  and q u a l i t a t i v e l y  p red ic t ed  
(38) by t h e  earlier ab  i n i t i o  t h e o r e t i c a l  t rea tment  of R. T. Pack. 

Therefore ,  i t  i s  ev iden t  t h a t  t h e  two b a s i c  phys ics  i s s u e s  are 

v e r i f i e d  by bo th  theory  and experiment t o  be f avorab le  t o  laser 

i s o t o p e  s e p a r a t i o n  of UF 

combination band a t  3 

6 ’  

LASERS FOR MOLECULAR LASER ISOTOPE SEPARATION 

Due t o  t h e  need f o r  t unab le  i r  l a s e r s  f o r  b a s i c  s t u d i e s  i n  

laser photochemistry,  as w e l l  as f o r  t he  molecular  laser i s o t o p e  

s e p a r a t i o n  p rocess  f o r  uranium, s e v e r a l  important  new ir  laser 

systems have been developed. Among t h e s e  new laser systems a r e  

t h e  HF-pumped o p t i c a l  paramet r ic  o s c i l l a t o r ,  (39) t h e  C02-pumped 

CF4 l a s e r ,  

based on o p t i c a l  pumping and Raman s c a t t e r i n g  from para-hydrogen. 

Lasers, due t o  t h e i r  complexi ty  and t h e  number r equ i r ed ,  dominate 

economic cons ide ra t ions  f o r  molecular  laser i s o t o p e  s e p a r a t i o n .  

To minimize c o s t s  and a t  t h e  same t i m e  have r e l i a b l e  and e f f i c i e n t  

lasers, t h e  laser-based molecular  uranium i s o t o p e  s e p a r a t i o n  

program has  concent ra ted  on gas  lasers f o r  t h e  i r  as w e l l  as t h e  

uv r a d i a t i o n  requi red  f o r  t h i s  process .  Current  cand ida te  l a s e r s  

f o r  t h e  s e l e c t i v e  i r  s t e p  are CO pumped dev ices  s i m i l a r  t o  t h e  

CF4 laser. 

lasers. The most e f f i c i e n t  of t h e  rare-gas  lasers inc lude  X e C l  

and KrF. Output wavelengths f o r  t y p i c a l  ra re-gas-ha l ide  lasers 

are shown i n  F ig .  8 a long  wi th  t h e  c h a r a c t e r i s t i c  energy ou tpu t  

p e r  pu l se  and peak power genera ted  by a t y p i c a l  half-meter device  

desc r ibed  by Tallman. 

(40’ 41) t h e  CO bending-mode l a s e r ( 4 2 )  and o t h e r  systems 2- 

2- 
In  t h e  uv, a t t e n t i o n  is  focused on t h e  rare-gas  halogen 

( 4 3 )  

I n  a d d i t i o n  t o  t h e  fundamental-frequency lasers l i s t e d  above, 

Raman s c a t t e r i n g  from H2, D2, and CH us ing  t h e s e  lasers has  4 
genera ted  a d d i t i o n a l  uv f r equenc ie s  t h a t  a r e  u s e f u l  f o r  MLIS 

s t u d i e s .  Some of t h e  wavelengths genera ted  us ing  t h i s  technique  

are shown i n  F ig .  9. F u l l  u se  of Raman s c a t t e r i n g  from a l l  of t h e  
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522 JENSEN,  SULLIVAN, AND F I N C H  

OUTPUT 
WAVELENGTH 

LASER TYPE (nm) 

ArF 193 

KrCl 222 

KrF 248 

XeBr 282 

XeCl 308 

Xe F 354 

ENERGY OUTPUT 
(mJ) 

350 

45 

720 

60 

180 

500 

PEAK POWER 
(MW) 

12 

4.5 

i a  
2 

5 

12 

F I G U R E  8 Primary lasers in the ultraviolet 

KrF- Dp 

200 220 240 260 200 360 320 340 360 

H 2 / D 2  MIXTURES I I, , I ,  , Ill, , ,I , , , I I ' l o '  

HplCH4 MIXTURES I, , I IT ,I , , I , I ,  , 

200 220 240 260 280 300 320 340 360 
WAVELENGTH (nm 1 

F I G U R E  9 New uv wavelengths generated by Raman scattering 
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LASER ISOTOPE SEPARATION 523 

pr imary  lasers shown i n  F ig .  8 provide  coverage of  v i r t u a l l y  a l l  

of  t h e  u s e f u l  uv reg ion .  

With t h e  r e c e n t  record  of c o n t i n u i n g  p r o g r e s s  i n  s c a l i n g  and 

o p e r a t i o n ,  t h e  major i s s u e s  i n  t h e  development of high-average- 

power and r e l i a b l e  RGH lasers now l i e s  i n  t h e  o p t i c s  and i n  t h e  

pulse-power c i r c u i t .  

i d e n t i c a l  i n  a l l  t h e  rare g a s  h a l i d e  lasers so t h a t  r e s e a r c h  on 

one is a p p l i c a b l e  t o  a l l .  The KrF laser  h a s  rece ived  t h e  most 

a t t e n t i o n .  

p r o g r e s s  can  b e  a n t i c i p a t e d  i n  t h e  near  t e r m .  

The p u l s e  power requi rements  are e s s e n t i a l l y  

S e v e r a l  l i n e s  of R&D are  be ing  pursued and cont inued  

The c h a r a c t e r i s t i c s  of o p t i c a l  e lements  vary  s i g n i f i c a n t l y  

among t h e  ra re-gas  h a l i d e  lasers. O p t i c s  w i l l  b e  much more of a 

l i m i t a t i o n  on a RGH laser such as ArF a t  193 nm than  f o r  X e C l  o r  

XeF lasers .  An unanswered q u e s t i o n  about  RGH laser o p t i c s  i s  

r e l a t e d  to damage t h r e s h o l d s  a t  h i g h  average  p u l s e  e n e r g i e s  (1 t o  

10 J / p u l s e )  combined w i t h  high-pulse  rates (0 .1  - 5 kHz). A t  

h igh-pulse  rates, g a s  r e c i r c u l a t i o n  and c o n t r o l  assumes g r e a t e r  

s i g n i f i c a n c e .  The n e t  laser e f f i c i e n c y  a t  high-pulse  rates w i l l  

b e  lowered by power requi rements  f o r  gas  r e c i r c u l a t i o n ,  r e l a t i v e  

t o  t h e  n e t  e f f i c i e n c i e s  o b t a i n a b l e  a t  low-pulse r e p e t i t i o n  rates. 

Laser  requi rements  f o r  laser i s o t o p e  s e p a r a t i o n  were o u t l i n e d  

i n  Ref. 8, and a more r e c e n t  update  on uv lasers was p r e s e n t e d  by 

Rockwood. ( 4 4 )  Typica l  lasers be ing  developed are I - J f p u l s e ,  

1-Mz, KrF-gas-discharge lasers and 1-J /pulse ,  I-lcHz, CO pump 

lasers. 

single-mode-frequency s t a b i l i z a t i o n  about  l i n e  c e n t e r .  

2- 
The CO laser h a s  t h e  f l e x i b i l i t y  of l i n e  t u n i n g  and 2 

ECONOMICS 

The f i r s t  major a p p l i c a t i o n  of lasers t o  chemical  p r o c e s s i n g  

and s e p a r a t i o n  promises  t o  b e  i n  uranium enrichment i n  suppor t  of 

t h e  n u c l e a r  f u e l  c y c l e .  Most n u c l e a r  r e a c t o r s  r e q u i r e  a h i g h e r  

c o n c e n t r a t i o n  of t h e  f i s s i l e  235U i s o t o p e  t h a n  i s  p r e s e n t  i n  

n a t u r a l l y  o c c u r r i n g  uranium o r e s .  

238U are c u r r e n t l y  modif ied i n  gaseous d i f f u s i o n  enrichment  p l a n t s .  

The i s o t o p i c  r a t i o s  of 235U and 
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524 JENSEN, SULLIVAN, AND FINCH 

I n  t h e s e  f a c i l i t i e s  UF6 i s  al lowed t o  r e p e a t e d l y  d i f f u s e  through 

b a r r i e r s  t o  a c h i e v e  s e p a r a t i o n .  The i d e a l  s e p a r a t i o n  f a c t o r  f o r  a 

s i n g l e  s e p a r a t i o n  s t a g e ,  der ived  from t h e  r a t i o  of t h e  d i f f u s i v i t i e s  

f o r  235UF and 238UF6, i s  v e r y  s m a l l .  

are needed t o  a c h i e v e  c o n c e n t r a t i o n s  of 235U i n  t h e  range of 3-47;, 

r e q u i r e d  f o r  l igh t -water  moderated and cooled  n u c l e a r  r e a c t o r s  

(LWR's), T h i s  l e a d s  t o  l a r g e  c a p i t a l - i n t e n s i v e  p l a n t s ,  w i t h  a 

h i g h  e lec t r ic -power  demand f o r  c i r c u l a t i n g  t h e  gas  through a l l  t h e  

s t a g e s ,  and w i t h  a s i g n i f i c a n t  n e t  c o s t  f o r  t h e  enr iched  product .  

Because t h e  s p e c t r a l  f e a t u r e s  of t h e  two i s o t o p e s  of uranium 

6 

I n  p r a c t i c e ,  many s t a g e s  
6 

as UF are w e l l  s e p a r a t e d  when compared t o  laser bandwidths, 

r e l a t i v e l y  h i g h  s e p a r a t i o n  f a c t o r s  are a c h i e v a b l e  i n  a laser -based  

p r o c e s s  f o r  enrichment of  . The h igh  s e p a r a t i o n  f a c t o r s  w i l l  

a l l o w  enrichment of e i t h e r  n a t u r a l  uranium o r  d i f f u s i o n - p l a n t  

t a i l s  t o  reac tor -grade  material i n  a few s t a g e s ,  w h i l e  s imul ta -  

neous ly  e f f e c t i v e l y  e x t r a c t i n g  t h e  f i s s i l e  235U from t h e  feeds tock .  

235u 

Current  r e s e a r c h  and development e f f o r t s  are  focused on 

s c a l i n g  laser d e v i c e s  t o  t h e  powers r e q u i r e d  f o r  i n d u s t r i a l  scale 

a p p l i c a t i o n s .  Gas lasers, such as t h o s e  d i s c u s s e d  i n  t h e  prev ious  

s e c t i o n ,  have t h e  advantage of be ing  i n h e r e n t l y  s c a l a b l e .  Carbon- 

d i o x i d e  lasers are among t h e  most h i g h l y  developed of a l l  lasers 

and are be ing  used i n  a number of i n d u s t r i a l  a p p l i c a t i o n s  a t  t h e  

p r e s e n t  t i m e .  These lasers have a l s o  e s t a b l i s h e d  a c r e d i b l e  

record  f o r  o p e r a b i l i t y  and r e l i a b i l i t y .  

CO lasers is  presented  a t  F ig .  10. From Fig .  10  i t  may be seen 

t h a t  f o r  high-average-power lasers, t h e  n e t  c o s t  o f  o p t i c a l  power 

can b e  s u b s t a n t i a l l y  reduced r e l a t i v e  t o  t h a t  o b t a i n a b l e  w i t h  

small-scale devices .  

w i t h  o t h e r  t y p e s  of  g a s  lasers. 

A c o s t  s c a l i n g  c u r v e  f o r  

2 

S i m i l a r  s c a l i n g  r e l a t i o n s h i p s  may b e  expected 

An es t imated  c o s t  breakdown f o r  p o s s i b l e  I%IS uranium p l a n t s  

i s  presented  i n  F i g .  11. 

laser c o s t s  c o n s t i t u t e  a major  p o r t i o n  of t h e  c a p i t a l  c o s t s  of t h e  

f a c i l i t y  and t h a t  t o t a l  c a p i t a l  c o s t s  account  f o r  about  one- th i rd  

of t h e  n e t  c o s t  of s e p a r a t i o n  wi th  t h e  laser -based  process .  

From t h i s  f i g u r e  i t  may b e  seen t h a t  
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FIGURE 10 Carbon d ioxide  laser c o s t s  from 1978 Laser Focus Buyers Guide 

DIRECT EQUIPMENT COSTS 7% FOR UV LASERS 
ACCOUNT FOR 1/3 OF TOTAL 
TAILS PLANT - 

9 %  I \ ':' 

FIGURE 11 Direc t  equipment c o s t s  account f o r  one-third of t o t a l  t 
p l a n t  
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Current  p r o j e c t i o n s ,  based on s e v e r a l  independent e v a l u a t i o n s  made 

by LASL, Rockwell I n t e r n a t i o n a l ,  Union Carbide-Nuclear D i v i s i o n ,  

and Garrett AiResearch, i n d i c a t e  that t h e  laser -based  enrichment  

p r o c e s s  should r e s u l t  i n  s i g n i f i c a n t l y  lower n e t  s e p a r a t i o n  c o s t s  

and e lec t r ica l -power  requi rements .  

molecular-based laser i s o t o p e  s e p a r a t i o n  are compared w i t h  t h e  

es t imated  c o s t s  and power requi rements  f o r  new d i f f u s i o n  p l a n t s  i n  

Table  XI. The d i r e c t  s a v i n g s  t o  u t i l i t i e s  w i t h  MLIS technology 

working i n  a supplementary r o l e  of t a i l s  s t r i p p i n g  could b e  over  

The p r o j e c t e d  v a l u e s  f o r  

TABLE I1 

COMPARISON OF MOLECULAR LASER ISOTOPE SEPARATION 
WITH GASEOUS DIFFUSION 

Gaseous Molecular 
D i f f u s i o n  MLIS 

UF6 uF6 Feed Material 

S e l e c t i v i t y  (a-1) ( a )  2 x 1 ~ - 3  1-15 

2600 50-120 (b) Energy (kWh/SWU) 

N e t  S e p a r a t i o n  Cost ($/SWU) 90-140(c) 15-30 (d) 

Power Cos ts  ($/SWU) 68 a2 

S t a t u s  Product ion  R & d e )  

i s  def ined  as t h e  r a t i o  of t h e  i s o t o p i c  abundance r a t i o s  
of t h e  product  and t a i l s  streams of a s i n g l e  s t a g e .  

(b)SWU refers  t o  a kg-separa t ive  work u n i t  as c o n v e n t i o n a l l y  

“’The range  of c o s t s  v a r i e s  f o r  t h e  e x i s t i n g  US d i f f u s i o n - p l a n t  
complexes vs new US o r  European p l a n t s  and by t h e  method of 
f i n a n c i n g .  

def ined  i n  uranium enrichment p r o c e s s e s .  

(d)The c o s t s  f o r  LIS are c a l c u l a t e d  w i t h  10-year a m o r t i z a t i o n  
r a t h e r  than  t h e  l o n g e r  t e r m s  used f o r  d i f f u s i o n -  and c e n t r i f u g e -  
p l a n t  e v a l u a t i o n s .  

(e )Engineer ing-sca le  MLIS f a c i l i t i e s  are  planned t o  b e  p laced  i n t o  
t h e  e x i s t i n g  d i f f u s i o n  p l a n t s  s t a r t i n g  i n  t h e  mid-e ight ies .  
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LASER ISOTOPE SEPARATION 527 

700 m i l l i o n  d o l l a r s  per year .  This conclusion i s  based on the  

assumption of $40/ lb  yellow cake and an MLIS capac i ty  of 20 mi l l i on  

SWLJ/yr t o  s e r v i c e  the  d i f f u s i o n  and cen t r i fuge  f a c i l i t i e s  expected 

t o  be i n  p lace  a f t e r  1990. Replacement of the  e x i s t i n g  d i f f u s i o n  

f a c i l i t i e s ,  f o r  which t h e  power c o s t s  a lone  a r e  seve ra l  t i m e s  t h e  

p ro jec t ed  t o t a l  c o s t s  of t he  laser-based systems, should y i e ld  

sav ings  of over 900 mi l l i on  d o l l a r s  annually on an investment of 

about 2.5 b i l l i o n  d o l l a r s .  In  add i t ion  t o  the  reduct ion  i n  d i r e c t  

c o s t  f o r  electrical-power,  MLIS w i l l  make poss ib l e  i n d i r e c t  sav ings  

through reduct ion  of mining and mi l l i ng  requirements by opera t ion  

a t  a s i g n i f i c a n t l y  lower t a i l s  mole f r a c t i o n .  

INDUSTRIALIZATION 

The in t roduct ion  of l a s e r s  i n t o  i n d u s t r i a l  chemical processes  

has  been slow. This  i s  due t o  t h e  high cos t  of l a s e r  photons, t h e  

l a c k  of an  adequate da t a  base, and i n  p a r t  t o  t h e  high sophis t ica-  

t i o n  of laser-based technology. A comparison of t h e  r e l a t i v e  

c o s t s  of l a s e r  photons i s  shown i n  Fig.  1 2 .  Based on the  pro jec ted  

c o s t s  from Fig.  1 2 ,  which assumes amor i t i za t ion  of t he  laser 

c a p i t a l  c o s t s  over a ten-year period, it i s  clear t h a t  i r  photons 

c o s t  a few c e n t s  per E ins t e in  whereas uv photons range from 50 

c e n t s  t o  $1.50 per E ins t e in .  Current production methods f o r  

chemicals r e s u l t  i n  c o s t s  t h a t  range from 2 ~ / m o l e  t o  $2.00/mole. 

Considering t h e  f a c t  t h a t  t h e  l a s e r  c o s t s  would r ep resen t  only a 

f r a c t i o n  of t h e  c o s t  of a chemical production p l an t  i t  is  easy t o  

see why t h e  development of laser-based processes has been concen- 

t r a t e d  on high-cost products such as i so topes .  A more complete 

d i scuss ion  of p o s s i b i l i t i e s  and l i m i t a t i o n s  t o  the  app l i ca t ion  of 

l a s e r s  i n  i n d u s t r i a l  processes i s  given i n  Ref. 45. 

With t h e  advent and r ap id  development of rare-gas-halide 

lasers, new areas of a p p l i c a t i o n  have been opened. These new 

a r e a s  inc lude  p u r i f i c a t i o n ,  ( 4 6 )  de tec t ion ,  (47) and c a t a l y s t  genera- 

t i o n .  (48) The s i lane-pur i f  i c a t i o n  research  described i n  Ref. 46 
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t 

WAVELENGTH (pm) 

FIGURE 1 2  Laser photon c o s t s  i n  $ /E ins t e in  

has  demonstrated t h a t  laser processes  f o r  t h e  removal of impurity 

molecules t h a t  a r e  present  i n  small q u a n t i t i e s  i n  a process  stream 

can be q u i t e  competit ive.  Cost p ro j ec t ions  for a l a s e r  add-on 

process f o r  t h e  p u r i f i c a t i o n  of s i l a n e ,  which is  t h e  feeds tock  

m a t e r i a l  f o r  t h e  production of s i l i c o n  s o l a r  c e l l s  and s i l i c o n  

wafers f o r  t h e  e l e c t r o n i c s  indus t ry ,  are i n  t h e  range of a few 

c e n t s  per  kilogram of p u r i f i e d  material. Because t h e  DOE 1986 

p r i c e  goa l  f o r  p u r i f i e d  s i l a n e  i s  $lO/kg t h e  laser add-on would be 

i n s i g n i f i c a n t  costwise,  bu t  would y i e l d  much h igher  r e s i s t i v i t y  

ma te r i a l .  The a p p l i c a t i o n  of lasers t o  o the r  p u r i f i c a t i o n  problems 

holds  h igh  promise and is  c u r r e n t l y  an a r e a  of h igh  i n t e r e s t  t o  

t h e  laser comuni ty .  
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LASER ISOTOPE SEPARATION 529 

Mult iphoton-laser  processes  have thus  f a r  found l i m i t e d  

p r a c t i c a l  a p p l i c a t i o n  o u t s i d e  of t he  a r e a  of i so tope  sepa ra t ion .  

However, i t  i s  reasonable  t o  p r e d i c t  t h a t  o the r  important  a r e a s  of 

a p p l i c a t i o n  w i l l  be  found f o r  t h i s  process  and i t s  va r ious  der iva-  

t i v e s  . 
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